设为首页 | 收藏我们

-- 代理维修品牌 --
BOSE维修网
雅马哈音响维修网
JBL音响维修网
皇冠功放维修网
马兰士功放维修网
安桥功放维修网
天龙功放维修网
建伍功放维修网
QSC音响维修网
声艺调音台维修网
百灵达调音台维修网
先锋音响维修网
功放维修资料

音频功放的种类与D类功放的工作原理

音频功放的种类与D类功放的工作原理

北京功放维修|功放维修|北京功放维修电话|北京功放维修中心|功放维修中心

音响功放又称音频功率放大器,它主要由前置级、音调级、功率放大级这几部分组成,如图1所示。前置级的要求是输入阻抗高、输出阻抗小、频带宽、噪声小;音调级的作用是对输入信号进行调节,使输入信号提升和衰减;而功率放大级则是音频放大器的主要部分,它决定了输出功率的大小,要求具有输出效率高,输出功率大的特点。对于整个功率放大器而言,要求其失真小、噪声低,有较好的扩音效果。

 
    近几十年来,A类、B类、AB类音频功率放大器(额定输出功率)一直占“统治”地位,所用器件从电子管、晶体管到集成电路;电路组成从单管到推挽电路;电路形式从变压器到OTL、OCL、BTL。这类功放的的最大缺点是效率低:A类音频功率放大器的最高工作效率为50%、B类音频功率放大器的最高工作效率为78.5%、 AB类音频功率放大器的工作效率则介于两者之间。但是无论A类、B类还是AB类音频功率放大器,当它们的输出功率小于额定值时,效率就会明显降低,在播放动态的语言、音乐时,平均工作效率只有30%左右。
    近年来,随着数字音响技术的发展,效率极高(理论上可达到100%)的D类功放应运而生,并得到了广泛的应用。
    提示:BTL (Bridge-Tied-load)意为桥接式负载。负载的两端分别接在两个放大器的输出端,一个放大器的新出是另外一个放大器的镜像输出,也就是说,加在负载两端的信号仅在相位上相差180°,负载上将得到原来单端输出的2倍电压,理论上的输出功率为双通道输出的4倍。
    BTL形式不同于推挽形式,BTL的每一个放大器放大的信号都是完整的信号,只是两个放大器的输出信号反相而已。BTL形式能充分利用系统电压,因此BTL形式多用于低电压供电系统或电池供电系统中。
一、普通音频放大器的种类
      按照信号导通角的不同,普通音频功率放大器可分为A、B、C和AB类共四类,各类的具体特点如一下:
    1.A类放大器
    A类放大器的晶体管输入特性曲线如图2所示,其静态工作点为Q点。输入正弦音频信号,当其幅度未超出特性曲线的线性范围时,集电极工作状态处于截止区和饱和点之间,集电极电流为完整的全周导通的正弦波,此时导通角为180°(导通角是以最小值至最大值之间占全周的部分来计算,全周导通时为180°),这种放大状态失真度较小。当无交流信号输入时,放大器中有约一半幅度(Q点)的直流电流流过,故效率最低,低于50%。

 
    A类功率放大器主要用于小功率的收音机、助听器中,也有部分高级的Hi -Fi功率放大器采用此方式。
    2.B类放大器
    B类放大器的晶体管输入特性曲线如图3所示,其静态工作点为Q点,位于截止点上。功率管只在信号半周内导通(导通角为90°),其集电极输出半个正弦波。为了减少失真,B类放大器均用双管做成推挽式,每只功率管工作一个半周,从而构成完整的正弦波。

 
    B类状态的最大优点是无信号时理论上没有直流电流流过功率管,即没有直流功率损耗,效率超过50%。由于三极管特性曲线起始端为非线性,为了减少失真,常在推挽放大器的两只三极管的基极加上正向偏置电压,如图4所示,则每只功率管的导通角大于半周,其效率为60%~70%,工作状态介于A、B类之间,故又称之为AB类功率放大器

 
    3.C类放大器
    C类放大器的晶体管输入特性曲线如图5所示,其静态工作点为Q点,位于截止点之下,只有输入信号中超过偏置点的部分,功率管才导通。这种方式虽效率更高,但由于失真过大,难用于音频功放,一般多用于高频功放电路中,作为倍频器使用,因为在该类放大器的功率管的集电极谐波丰富,用高Q电路调谐于二次谐波,即可输出完整波形的倍频正弦波。
 二、普通音频放大器应用电路
    普通音频放大器的具体电路有很多种,现以在功放机中采用得最多的全直流全对称互补功放电路为例进行简要介绍。
    该功放电路具有电路简单、失真与噪声低、转换速率高等优点。如图6所示。该功放可对5Ω负载提供100w的不失真功率,输入灵敏度为300mV,输出噪声电压为1.2mV。

 
    在该电路中,二极管D1、D2起隔离供电作用,以提高在大动态突发信号输入时前级电路的驱动能力。当大动态突发信号到来时,末级输出管的电流剧增,迫使电源电压瞬间下降,这时由于D1、D2的反向隔离作用,滤波电容C5、C7上的电压不能突变,仍可基本保持原电压,故推动级仍能继续提供较高的信号电压和较大的驱动电流,使声音听起来更加强劲有力。由于大动态的突发信号常出现于低频段,因而该技术的采用对于超低频功放来说尤其具有重要意义,实际听感也证实了这一点。
    本电路的直流工作点已由设计确定,其中输入级差分对管的工作电流为0.9mA,输出管的静态电流为80mA,工作于AB类状态。为提高输出级静态工作点的热稳定性,在其偏置电路中采用二极管D3-D5和负温度系数热敏电阻R10进行温度补偿,其中R10贴装于功放管散热器上,此举对提高功放的热稳定性很有效,末级管的冷、热态静态电流可控制在30mA-80mA内,无须“热身”,一开机便可进入较佳的工作状态。如不采用R10,冷、热状态静态电流变化范围为0~100mA。若将R10的值改为200Ω,热稳定性还能进一步提高。
 三、D类功率放大品
    从以上介绍可知,影响放大器效率的主要因素是无信号时的工作电流大小,即该电流所形成的直流功率损耗。无信号时,电流愈大则直流损耗越大,效率越低。为此,要提高效率则应降低工作点,使无信号输入时,也没有直流损耗。但是,信号导通角越小,波形失真就越大,输出信号中的谐波成分就增加,这两个要求是相互矛盾的。
    如果输入波形的边沿很陡峭,即使降低工作点,对导通角的影响也很小,失真劣化不大,而效率又可以得到提高。波形陡峭的极限状态是输入信号为矩形波,这种波形,无论偏置如何变化,由于前后边沿是垂直升降的,导通状态都不会发生变化,这样就诞生了工作于脉冲放大状态的D类功率放大器
    D类放大器工作于开关状态,无信号输入时无电流;导通时,没有直流损耗。事实上,由于关断时器件中尚有微小的漏电流,而导通时器件又没有完全短路,尚有一定的管压降,故存在较少的直流损耗,因此其实际效率为80%~90%,这仍是现有放大器中效率最高的。
    正是由于D类放大器的效率高,功率器件的耗散功率小,产生热量少,可以大大减小散热器的尺寸,连续输出功率很容易达到数百瓦。另外,由于D类功放工作在频率比音频频率高10多倍的脉冲状态,故电源整流纹波对电路工作影响很小。
    1.电路组成
    D类功率放大器工作于开关状态,基本结构主要由调制器、D类功放和低通滤波器组成,如图7所示。

 
    第一部分为调制器,最简单的只需用一只运放构成比较器即可完成。把原始音频信号加上一定直流偏置后送到运放的正输入端,另通过自激振荡生成一个三角形波加到运放的负输入端,如图8所示。当正端上的电位高于负端三角波电位时,比较器输出为高电平,反之则输出低电平。若音频输入信号为零、直流偏置电压为三角波峰值的1/2,则比较器输出的高低电平持续的时间一样,输出就是一个占空比为1:1的方波。当有音频信号输入时,在正半周期间,比较器输出高电平的时间比低电平长,方波的占空比大于1:1;在负半周期间,由于还有直流偏置,所以比较器正输入端的电平还是大于零,但音频信号幅度高于三角波幅度的时间却大为减少,方波占空比小于1:1。这样,比较器输出的波形就是一个脉冲宽度被音频信号幅度调制后的波形,称为PWM(Pulse Width Modulation脉宽调制)或PDM (Pulse Duration Modulation脉冲持续时间调制)波形。
北京音响维修 © 2012 版权所有
技术支持:信达网